Staci D. Bilbo

Staci D. Bilbo

Professor of Psychology and Neuroscience

Education & Training

  • Ph.D., Johns Hopkins University 2003

  • B.A., University of Texas, Austin 1998


The brain, endocrine, and immune systems are inextricably linked. Immunocompetent cells are located throughout virtually every organ of the body, including the brain and other endocrine tissues, and sophisticated interactions occur among these cells, via hormones, neurotransmitters, and soluble protein messengers called cytokines and chemokines (small chemotactic cytokines). These immune molecules have a powerful impact on neuroendocrine function, including behavior, during health as well as sickness.  Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity.  These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources but can also lead to pathology or exacerbate disease if prolonged or exaggerated. However, the mechanisms by which such pathology develops, in particular the precipitation of mental health disorders, remain largely misunderstood. The developing brain is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. There is now ample evidence that immune activation during prenatal or early postnatal development can have profound and long-lasting effects on the brain, and I believe the early-life immune history of an individual may indeed be critical to understanding the later-life risk or resilience of developing certain neuropsychiatric disorders.  

A particular focus of my research is on microglia, the primary immunocompetent cells of the CNS, which are involved in multiple aspects of brain development and function, including activity-dependent synaptic pruning and stripping, phagocytosis of apoptotic cells, and angiogenesis.  Cytokines such as tumor necrosis factor [TNF]a, interleukin [IL]-1b, and IL-6 are produced primarily by glia within the CNS and are implicated in the developing and adult brain in synaptic scaling, long-term potentiation, and neurogenesis.  Microglia originate early in the life of the fetus and are very long-lived, meaning they may have the capacity to reside in the brain for most of the life of the animal. Taken together, I have hypothesized that the developing brain is particularly sensitive to early-life immune activation and the associated risk of later-life neuropsychiatric disorders because (1)microglia are long-lived such that previously activated/functionally altered microglia (i.e. microglia exposed to an early-life immune challenge) may remain within the brain into adulthood, (2) immature microglia within the developing brain are functionally and/or immunologically different than microglia within the adult brain such that early-life immune activation can have greater consequences for neuroimmune function when compared to the adult brain, and (3) microglia and their inflammatory products are critical for normal cognitive function and behavior such that neuroimmune dysfunction results in mental health dysfunction.  

The simple goal of my research is thus to understand the important role of the immune system during brain development, and thereby the ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.  In concert with this, I am interested in modeling current social and environmental issues (e.g. poverty, pollution, addiction) that impact the developing brain, and thereby how these factors may eventually be mitigated via careful scholarship, education, and engagement with trainees, collaborators, and members of society.


Neuroimmune interactions, microglia biology, fetal origins of adult disease and health disparities, sex differences, environmental neurobiology and environmental justice

Maguire, Rachel L., et al. “Associations between maternal obesity, gestational cytokine levels and child obesity in the NEST cohort.Pediatr Obes, Dec. 2020, p. e12763. Pubmed, doi:10.1111/ijpo.12763. Full Text

Smith, Caroline J., et al. “Neonatal immune challenge induces female-specific changes in social behavior and somatostatin cell number.Brain, Behavior, and Immunity, vol. 90, Nov. 2020, pp. 332–45. Epmc, doi:10.1016/j.bbi.2020.08.013. Full Text

Missig, Galen, et al. “Sex-dependent neurobiological features of prenatal immune activation via TLR7.Molecular Psychiatry, vol. 25, no. 10, Oct. 2020, pp. 2330–41. Epmc, doi:10.1038/s41380-018-0346-4. Full Text

Bordt, Evan A., et al. “Microglia and sexual differentiation of the developing brain: A focus on ontogeny and intrinsic factors.Glia, vol. 68, no. 6, June 2020, pp. 1085–99. Epmc, doi:10.1002/glia.23753. Full Text

Hollander, Jonathan A., et al. “Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease.Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, vol. 45, no. 7, June 2020, pp. 1086–96. Epmc, doi:10.1038/s41386-020-0648-5. Full Text

Bordt, Evan A., and Staci D. Bilbo. “Stressed-Out T Cells Fragment the Mind.Trends in Immunology, vol. 41, no. 2, Feb. 2020, pp. 94–97. Epmc, doi:10.1016/ Full Text

Kingsbury, Marcy A., and Staci D. Bilbo. “The inflammatory event of birth: How oxytocin signaling may guide the development of the brain and gastrointestinal system.Frontiers in Neuroendocrinology, vol. 55, Oct. 2019, p. 100794. Epmc, doi:10.1016/j.yfrne.2019.100794. Full Text

Edlow, Andrea G., et al. “Placental Macrophages: A Window Into Fetal Microglial Function in Maternal Obesity.International Journal of Developmental Neuroscience : The Official Journal of the International Society for Developmental Neuroscience, vol. 77, Oct. 2019, pp. 60–68. Epmc, doi:10.1016/j.ijdevneu.2018.11.004. Full Text

Bordt, Evan A., et al. “Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response.Neurotoxicity Research, vol. 36, no. 2, Aug. 2019, pp. 239–56. Epmc, doi:10.1007/s12640-018-9962-7. Full Text

Smith, C. J., et al. “A Protocol for Sedation Free MRI and PET Imaging in Adults with Autism Spectrum Disorder.Journal of Autism and Developmental Disorders, vol. 49, no. 7, July 2019, pp. 3036–44. Epmc, doi:10.1007/s10803-019-04010-3. Full Text


Edlow, Andrea G., et al. “Sexually-Dimorphic Effects of Maternal Obesity on Microglial Antigen Density in the Embryonic Hippocampus: Implications for Offspring Hippocampal Learning.Reproductive Sciences, vol. 26, SAGE PUBLICATIONS INC, 2019, pp. 96A-96A.

Selected Grants

Neurobiology Training Program awarded by National Institutes of Health (Mentor). 2019 to 2024

Fetal Brain-Placental Immune Activation in Maternal Obesity awarded by Massachusetts General Hospital (Principal Investigator). 2019 to 2022

Prenatal Oxycodone Exposure: Developmental Effects on Microglia and Addiction-like Behavior in Rats awarded by McLean Hospital (Principal Investigator). 2019 to 2021

Environmental Toxins and Microglia-Synapse Interactions in Autism awarded by National Institutes of Health (Principal Investigator). 2016 to 2021

Determining the function of TSPO in neural tissue awarded by Massachusetts General Hospital (Principal Investigator). 2019 to 2021

Microbiome Changes in Mouse Models of ASD awarded by Massachusetts General Hospital (Principal Investigator). 2019 to 2021

Basic predoctoral training in neuroscience awarded by National Institutes of Health (Training Faculty). 1992 to 2018

Neural-Glial Interactions and Opioid Abuse: Modulation by Early-Life Experience awarded by National Institutes of Health (Principal Investigator). 2013 to 2018

Sex Differences in Developing Microglia: Implications for Synaptic Pruning awarded by National Institutes of Health (Principal Investigator). 2013 to 2016