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DIRECT ORIENTATION AND FEEDBACK 

 
Kinesic (indirect) orientation works by means of successive comparisons.  Animals orient in this 
way either when the gradient to be detected is too shallow to permit simultaneous comparison, or 
when the source of stimulation cannot be sensed at a distance because the direction of local gradi-
ents is not perfectly related to the direction of the source.  Visual and auditory stimuli allow for a 
more efficient strategy: The steepest local gradient always points to the source, and gradients are 
usually quite steep.  Thus, simultaneous comparisons can provide immediate feedback about the 
proper direction of movement, allowing direct orientation with no wasted motion. 

In this chapter I discuss simple mechanisms of direct orientation, first in a descriptive 
way, and then in terms of feedback mechanisms.  The discussion of feedback serves several pur-
poses: It shows how feedback is involved in orientation, and how a mathematical model can ac-
count for experimental results.  It shows how apparently different orientation reactions can be 
considered as variants of the same process.  It illustrates the difference between static and dy-
namic behavior theories.  The remainder of the chapter discusses the type of explanation given by 
feedback accounts and shows how the concept of feedback control provides a mechanistic expla-
nation for motive and purpose.   

TAXES 
Fraenkel and Gunn classify direct orientation (taxic) reactions into four main types. These do not, 
in fact, correspond to completely different mechanisms, but the mechanisms will be easier to un-
derstand after I describe the different types and the experiments used to tell one from the other 

Klinotaxis 
The first taxic reaction, klinotaxis, is really an intermediate case, since it involves both direct ori-
entation and successive comparisons. Figure 3.1 shows an example of the relevant behavior: 
Mast tested each of four maggots (Lucilia sericata) four to six times for its orientation to a beam 
of horizontal light. Movement was always directly away from the light, although the tracks are 
not perfectly smooth. Substantial head movements (wiggles in the record) are apparent, particu-
larly in the track of maggot A. These head movements provide a clue to the underlying process.  
Fraenkel and Gunn write: “During steady forward crawling the head is sometimes put down 
symmetrically in line with the axis of the body, but from time to time it comes down alternately 
to the right and to the left. When the maggot first begins to crawl, these lateral deviations of the 
head are usually considerable, and may even result in the body assuming a U-shape” (1940, p. 
60). The animals look as if they are searching in some way for the direction of the light. Once 
they find it, they move in the opposite direction. 
     The animals find the direction of the light by successive comparison. This can be shown 
by tricking the animal: turning on an overhead light when the animal is turning in one direction 
and turning it off when it faces the other direction. Under these conditions a negatively phototac-
tic animal moves in the direction associated with the low light level. 
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This process is similar to so-called trial-and-error learning, but is much simpler than the 
learning of higher organisms. No long-term memory is involved; the maggot does not remember 
where the light was or anything of the sort. The maggot has fewer modes of reaction than an ani-
mal such as a rat, and can, therefore, be led into 
maladaptive behavior by relatively simple means. 
For example, the animals may move away from a 
directional source even if it means moving into a 
region of higher, but non-directional (e.g., over-
head) illumination. They can also be induced to 
move up (rather than down) a gradient of illumi-
nation by turning on a second light only when the 
animal is facing down the gradient. In the absence 
of a long-term memory, the animal has no way of 
discovering that its situation, while improving on 
a moment-by-moment basis, is getting worse 
overall.1    

Lest we begin to feel arrogant, I should 
point out that very similar tricks can be played on 
the human visual system.  Figure 3.2 shows at the 
top a sawtooth gradient of illumination: from left 
to right, the illumination repeatedly grows slowly 
dimmer then rapidly brighter. The bottom part of 
the figure shows what this pattern looks like to 
the eye. Because of inhibitory, rate-sensitive 
mechanisms, the rapid increases in illumination 

have a greater perceptual effect than the slow decreases. 
Consequently what is seen is a staircase pattern of progres-
sively increasing brightness.  Edge-sensitivity is a very 
general property of perceptual systems — even honeybees 
show it (Davey, Srinivasan & Maddess, 1998).  

These effects arise because sensory systems, and the 
orientation mechanisms that depend on them, are usually 
more sensitive to the rate of change of the relevant stimulus 
than to its absolute value: The important variables are the 
higher derivatives if the stimulus value, with respect to 
space and time, rather than the stimulus value itself.2 Sen-
sory adaptation is one of many labels for this sensitivity 
rate of change, since it refers to the waning effect of a 
stimulus with time following its onset. This mechanism is 
enormously useful to animals, and represents in most cases 
a great improvement over dependence on absolute stimulus 
values. As we have seen, however, in the absence of other, 
longer-term memory processes it can sometimes lead to 

maladaptive behavior. 
The details of the mechanism of klinotaxis, in Lucilia or any of the other species that 

show the pattern (e.g., the protozoan Euglena, earthworms, the ascidian  Amaroucium), have not 
been fully worked out. It is likely that the behavior of head-swinging (which also guides the 
animal) occurs only when the rate of change of illumination of the receptor(s) exceeds some 
threshold value. In a stable, uniform light field, the animal moves little and swings its head from 
side to side in a relatively narrow arc; but if the light falling on the receptors increases greatly 

Figure 3.2. Top: gradient of lumi-
nance across a striped array. Bottom: 
perceptual effect of this luminance 
disturbance - a staircase pattern of 
progressively increasing brightness. 

Figure 3.1. Tracks of four maggots (A to D) in 
a beam of horizontal light (arrows.) Each mag-
got was tested 4-6 times. (From Mast, 1911.) 
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(which might be because the animal has entered a lighter region, or because the ambient illumi-
nation has changed) a large head excursion occurs, followed by a smaller return swing. If any of 
these subsequent swings again produces an increase in receptor illumination, further swings are 
produced. As time elapses, the effect of increases in receptor illumination diminishes because of 
adaptation, so that successive head swings are likely to be of smaller and smaller amplitude. If 
the source of illumination is fixed, the animal will, in the meantime, have become oriented away 
from it, so that tracks similar to those in Figure 3.1 result. If the source of illumination is moving, 

then obviously the animal’s ability to orient away from 
it will depend critically on quantitative details involv-
ing its rate of movement, of head swinging, and of sen-
sory adaptation. I return to quantitative questions in the 
discussion of feedback later in the chapter. 

The remaining taxic orientation reactions, tropo- 
and telotaxis and the light-compass reaction, all involve 
simultaneous comparison of the stimulation of two or 
more bilaterally symmetrical receptors. One clue to the 
type of reaction is provided by the track of an animal 
orienting in a uniform gradient: The track is convoluted 
if the mechanism is a kinesis, wavy for klinotaxis, but 
straight for the taxes that use simultaneous comparison. 
Tropotaxis and the light-compass reaction differ chiefly 
in their quantitative properties. 

Tropotaxis 
The two-light experiment, illustrated in Figure 3.3, is 
critical to the identification of tropotaxis. The figure 
shows the tracks of several pill-bugs (Armadillium sp.), 
a terrestrial crustacean that lives under rocks and decay-
ing wood, placed some distance from a pair of equal 
lights. Armadillium behaves in a positive phototactic 
fashion in this experiment: It approaches the two lights. 

But when placed equidistant between the two lights the animal will often follow a path in between 
them, rather than going straight to one or other of the two. 

Tropotaxis is the outcome of a balancing process: 
The animal turns until the two eyes are stimulated equally 
and then proceeds forward. As the animal approaches a 
point directly in between the two lights, it will go directly to 
one or other of them, as the tracks show. At that point, a 
head swing that faces the animal directly toward one of the 
lights will also eliminate the influence of the other one. 

     A second means of identifying tropotaxis is to 
eliminate the stimulation on one side of the animal, either 
by blinding it in one eye or painting over the eye if this is 
possible. The result is circus movements: In a uniform light 
field, such as an overhead light, elimination of one eye 
means that stimulation appears to come from only one side. 
If the animal is positively phototactic it then turns continu-
ously toward the illuminated side; if it is negatively photo-

tactic, it turns continuously toward the blinded side. In the normal animal with an eye-level light 
source, these reactions would lead eventually to equal stimulation of both eyes and leave the ani-

Figure 3.4. Tracks of photo-
negative Ephestia larvae, blinded on 
one side, under three illumination 
conditions.  (After Brandt, 1934.) 

Figure 3.3.Tracks of photo-positive Ar-
madillium toward two equal lights. (After 
Müller, 1925.) 
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Hemimysis lamornei 

mal facing either away from, or toward, the light source. Figure 3.4 shows an example of circus 
movements produced in unilaterally blinded Ephestia larvae. 

Light-compass reaction 
The third taxis in Fraenkel and Gunn’s basic list is the light-compass reaction. This pattern is 
very common in animal orientation. For example, bees use it in returning to the hive, and ants, 
although often able to rely on odor trails, can also orient with respect to the sun, finding their 
way back to the nest by keeping a fixed angle between their path and the direction of the sun. 
Moreover, many species are able to compensate for the movement of the sun by a change in this 
light-compass angle, so that a fixed direction is maintained (this is sometimes termed sun-
compass orientation, and it appears to be one of the main components in the feats of navigation 
performed by migrating birds). This compensation depends on an “internal clock,” tied to the 24-
hour cycle (a circadian rhythm). I show in a moment that light-compass orientation can be de-
rived from the same feedback mechanism as tropotaxis 

Telotaxis 
In tropotaxis, animals usually orient between two equal, symmetrically disposed lights, and only 
directly approach one of them when the angle subtended by the lights is large (see Figure 3.3). In 
telotaxis, the animals generally head straight for one of the two lights (although they may switch 
from one to the other as they approach) even if the lights are quite far away. Fraenkel and Gunn 
give a graphic, natural-history description of telotaxis as follows: 
 

Large numbers [of the little mysid crustacean, Hemimysis lamornei] are 
to be found in the aquarium tanks of the Marine Biological Stations at 
Plymouth and Naples.  When a single light is placed at the side of a 
glass tank containing Hemimysis, the animals swim to and fro 
continually, always keeping in line with the beam of the light.  
They swim about 10cm towards the lamp, then turn sharply 
through 1800 and cover about 10 cm again before turning back 
towards the lamp, and soon.  If an additional light is arranged so 
that the two beams cross at right angles, some of the mysids are quite 
unaffected in their behaviour while others switch over to this second 
light and behave as if the first one were nonexistent.  The result is that the mysids form two 
streams which, so to speak, flow through one another, crossing at right angles and not interfering 
with one another.  (1940, p.90) 

 
Examples of telotactic tracks of hermit crabs and 

an isopod (Aega) in a two-light experiment are shown in 
Figure 3.5   

The mechanisms involved in telotaxis depend on 
the type of receptor the animal possesses. If the eye is 
capable of forming a rudimentary image, that is, of im-
mediately identifying the bearing of a source of stimula-
tion, then the animal has the necessary information avail-
able on the receptor surface. The animal can orient cor-
rectly by placing its walking apparatus under the control 
of one image exclusively. This is not a trivial problem, 
since the image-identification system must compensate 
for changes in retinal position caused by the animal’s 
own movement. Both the lensed eyes of vertebrates and 
the compound eyes of insects and other arthropods pro-

vide the necessary directional information. 

Figure 3.5. Tracks of hermit crabs (a) and 
(b) and an isopod (c) in a two-light ex-
periment. Each part of the track is directed 
toward one light only. (a and b after Bud-
denbrock, 1922; c, Fraenkel, 1931.) 
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Many animals with image-forming eyes prefer to orient to a light using the balance 
mechanism of tropotaxis — shown both by orientation between two lights, and by circus move-
ments when unilaterally blinded — even though the same animal may respond telotactically under 
other conditions. For example, at first a unilaterally blinded bee will show circus movements, but 
after a while they cease and the animal will head straight toward a light source — a telotactic re-
sponse. The preference for tropotaxic orientation may be a reflection of the complex computa-
tions required for telotaxis. 

    Animals show many other simple orientation reactions. For example, so-called skoto-
taxis (approach to dark areas or objects); a variety of reactions to temperature gradients (usually 
favoring a particular zone of temperature, either because it is appropriate for the organism’s me-
tabolism, or because it is a signal of the animal’s prey, as when ticks prefer the skin temperature 
of their host); postural reactions to light and gravity — geotaxis and the dorsal light reaction; re-
actions to physical contact — many small and vulnerable animals seek out and conform to crev-
ices and comers; reactions to fluid flow (rheotaxis) — fish generally face upstream, flying insects 
orient into the wind, some tidal crustaceans orient using cues from wave currents; reactions to 
chemical and humidity gradients such as those discussed in Chapter 2; orientation in sound fields 
(sound localization). Similar principles — simultaneous or successive comparison, feedback, 
time-dependent effects — are involved in all these reactions. Despite the relative simplicity of 
each reaction analyzed in isolation, in combination they can lead to quite complicated, “intelli-
gent” behavior. More on this later. 

FEEDBACK ANALYSIS 
Tropotaxis depends upon a balance between stimulation of receptors on opposite sides of the 
body. The animal turns until stimulation of both receptors is equal and then approaches (positive 
phototaxis) or moves away from (negative photo-taxis) the source of illumination. The process 
can be represented as a simple feedback mechanism, as shown in Figure 3.6. The relations be-
tween organism and environment are here represented as a feedback loop, which shows the mu-
tual relations between some aspect of the environment and some aspect of behavior that is linked 
to it. 

    The picture in Figure 3.6 applies to many things of interest to psychologists and etholo-
gists. It will be helpful to have standard terms for its elements. Variable x, the aspect of the envi-

ronment to which the system is sensitive (the input) 
corresponds to different things in different experimen-
tal situations. Here it is simply the receptor disparity 
(measured in illuminance units) associated with a 
given orientation of the animal in relation to the light 
source. The output or response, y, is the aspect of the 
organism’s behavior that affects, and is affected by, 
feedback; here it is just the angle of the animal in rela-
tion to “north” (i.e., a standard direction), or in relation 

to the source, if the source is fixed. The two boxes la-
beled “organism” and “environment” in Figure 3.6 con-
tain two functions, O(x) and E(y), that describe how the 

input (x: receptor disparity) is related to the output (y: direction) by the animal (function O(x)), 
and how the output is related to the input by the environment (function E(y)). In most experiments 
E(y), called a feedback function, is known, and the objective is to discover the control function, 
O(x), imposed by the organism. 

 In tropotaxis, the feedback function, E(y), depends on the shape of the bilateral receptors, 
their sensitivity over their surface, and the geometry of the situation.  In the simplest case, the re-
ceptors can be considered as points or spheres, and the stimulation falling on each receptor will, 

Figure 3.6. Organism-environment relations 
in adaptive behavior. 
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therefore, be determined solely by its distance from a source of illumination, according to the in-
verse square law.  If the distance from the source is great, it is easy to show that the difference in 
stimulation of two bilateral receptors, y, is directly proportional to their separation, and to the sine 
of the angle between the midline of the animal and a line drawn from the source to the center of 
the animal (i.e., the animal’s heading with respect to the source).3 

Consider now how the control function, O(x), might work from moment to moment. The 
animal is presented with a certain disparity of stimulation, x, which will, in turn, be a function of 
its heading with respect to the fixed light source (call that angle θ ). Ignoring adaptation for the 
moment, the disparity must have an effect on the animal’s tendency to turn. Perhaps the simplest 
possibility is just that the animal’s rate of turning (measured in angular units per second) is pro-
portional to the receptor disparity, with a sign such that the turns are toward the more illuminated 
side (for positive phototaxis). This assumption can be expressed formally by saying that the first 
derivative of the heading angle, dθ/dt, is proportional to the receptor disparity. This is termed in-
tegral control, because the controlled variable, θ, is determined by the time integral of the con-
trolling variable, x. We thus arrive at a simple formal model of this situation: 

                                                                        x = Asinθ,    (3.1) 
giving the receptor disparity as a function of heading angle (the feedback function), and 

                                                     y = dθ/dt = -Bx,                                (3.2) 
giving the relation between rate of turning and disparity (the control function), where A and B are 
constants (A is proportional to receptor separation, and incorporates a scale factor; B represents 
the gain of the system: how fast the animal turns for how much disparity). 

Two aspects of this little model are of interest. One is the steady-state solution:  Assuming 
the light source is fixed, what will the animal’s final heading be? A second is the dynamics of the 
situation: How does the animal’s heading change with time? 

The static problem is simple. When things have settled down, we know that the animal 
will have ceased turning; that is, dθ/dt will equal zero, which means that x = 0 (from Equation 
3.2), which means that 0=θ  (from Equation 3.1). Hence the animal will eventually point toward 
the light source. The dynamic solution is a little more difficult to arrive at, and requires that we 
know the initial conditions (i.e., the animal’s initial heading) and, if the source is moving, the way 
in which it is moving as a function of time. I return to the dynamic problem in a moment 

This model illustrates the distinction between closed- and open-loop control. The stability 
of the system is ensured under normal conditions by the immediate effect of the response, turning, 
on the feedback input, receptor disparity.  But suppose receptor disparity were independent of 
turning (this is known as “opening the loop”)?  This could be done by blinding the animal unilat-
erally and leaving it in uniform light.  Under these conditions, x = C (constant).  You can see at 
once from Equation 3.2 that dtd /θ  must then equal BC, which is also a constant. Thus, the ani-
mal must turn constantly. This is, of course, exactly what is observed, in the form of the “circus 
movements” already described.  In a slightly more elaborate experiment, fixed amounts of light 
might be presented to each eye, allowing dθ/dt (turning rate) to be measured as a function of C 
(receptor disparity). The slope of the resulting line then gives the value of parameter B, the gain of 
the system. Opening the loop is obviously a useful technique for getting at the properties of feed-
back mechanisms. 
 The virtue for the animal of a negative-feedback mechanism is that it minimizes the effect 
of changes in the control function, O(x). For example, suppose that because of age or injury the 
animal is no longer able to turn as rapidly as before.  In terms of our model this change might be 
represented by a decrease in the value of parameter B in Equation 3.2. The steady-state solution is 
unaffected by this change: Even with impaired movement, the animal must still eventually orient 
toward a fixed source of illumination. This is just what is observed when the locomotor apparatus 
of a tropotactic animal is surgically interfered with (e.g., by immobilizing or amputating legs): 
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The response may be slowed, but the animal continues to orient appropriately.  
     The light-compass reaction seems more complicated than the mechanisms discussed so 
far, but it need not be. Consider, for example, a simple modification of Equation 3.2, our illustra-
tive model for tropotaxis: Instead of dθ/dt = -Bx, where x represents receptor disparity and θ the 
heading angle, suppose we add a constant, so that 
                                                    dθ/dt =  -Bx - C                                          (3.3) 
When dθ/dt = 0, x = -C/B, rather than 0, the previous steady-state solution. Consequently, the rest-
ing value of �, θ̂ , from Equation 3.1, is θ̂  = sin-1(-C/AB), where A, B, and C are constants. Thus, 
the system represented by Equation 3.3 maintains a constant angle to a light source (light-
compass orientation), rather than going directly toward it as in tropotaxis. 

The dependence of light-compass angle on time (sun-compass orientation) can be incorpo-
rated simply by making C a function of time, so that the model becomes: 
                                                   dθ/dt = -Bx - C(t),                                          (3.4) 
where C(t) is a function with a 24-hour period chosen so that light-compass angle shows the ap-
propriate temporal shift. 

Thus, feedback analysis shows that three apparently different orientation reactions can be 
considered just as variants on the same integral-control system. 

Dynamic analysis 
Equations 3.1 and 3.2 describe rate of turning as a function of time; they constitute a dynamic 
model for behavior. These equations illustrate two properties of dynamic models: First, such 
models generally express the effect of an independent variable on the rate of change in behavior, 
that is, as a differential or difference equation. In the tropotaxis example, equation 3.2 shows how 
a given interocular disparity changes the animal’s rate of change of direction. But we are gener-
ally interested not so much in the change in behavior as in its actual value: We want to know 
where the animal is heading at a given time, not its rate of turning. The differential equations must 
be solved before we can make predictions about behavior as a function of time. 

The second feature of dynamic models is that they have a steady-state solution that can of-
ten be deduced without having to solve the differential equations of the model. Much can be 
learned from the static analysis: Does the animal orient to the light? Does it show circus move-
ments or not? Where does it come to rest? Most of the theories described in this book are static 
theories. Nevertheless, static theories omit important system properties. They give few clues to 
the stability of the system, for example. An organism that under frequently encountered condi-

tions shows uncontrollable oscillations, such as the 
tremor of Parkinsonism or the continual turning of cir-
cus movements, is at a severe evolutionary disadvan-
tage. Organisms must be stable in response to normal 
perturbations. Identification of the necessary and suffi-
cient conditions for stability is one of the main objec-
tives of the dynamic analysis of feedback systems.4 
     Solving Equations 3.1 and 3.2 is actually quite 
simple and can serve as a model for much more compli-

cated analyses. The solution requires some familiarity with elementary calculus; readers lacking 
that background can skip the math and get on to the conclusions, which are all that is needed for 
later chapters. 

First, it will be convenient to measure the bearing of the light source (angle a in Figure 
3.7) and the heading of the animal (angle b) with respect to a fixed reference direction. Rewriting 
Equation 3.2 with these new designations yields: 

 

Figure 3.7 
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                                                         d(a-b)/dt = -Bx,                                                    (3.5) 
and Equation 3.1 becomes  
                       x = A sin(a - b).                   (3.6) 
It will greatly simplify later discussion if we consider only small values of a – b (i.e., headings 
close to the correct one) for which sin(a - b) = a - b. Equation 3.6 then becomes 
                                                    x = A(a - b).                     (3.7) 

We wish to solve Equations 3.5 and 3.7 so as to obtain the change in the animal’s heading 
angle, b, as a function of time, given that it starts from some initial heading b0. If the source is sta-
tionary (a = constant), this is easily done by substituting for x in Equation 3.5 and integrating: d(a 
- b)/dt = -AB(a - b). Since a is a constant, this reduces to -db/dt = -AB(a - b), or 
                          dt = db/AB(a - b).         (3.8) 
Integrating the left hand side of Equation 3.8 from 0 to the presenttime, t, and the right hand side 
from the initial heading, b0 to the present heading, b, yields: 

( ) ( )� � −=
t

o

b

b
badbABdt

0
.//1  

Evaluating the integrals yields: 
( )[ ].10 banABt b

b −−=  
putting in the limits of integration and exponentiating yields: 
                                                                exp(-ABt) = (a - b)/(a - b0),                                         (3.9)                                          
which is the desired function of time. Since a and b0 are both constants, this reduces to an expres-
sion of the form: 

( )ABtba −==− exp
0θθ ,   (3.10) 

where � = a - b0, which is the familiar exponential decay 
function illustrated in Figure 3.8.  

Notice that the exponential function in Equation 
3.10 has the properties it should: At t = 0 the bearing of the 
animal is �0; as t ��, � approaches 0; and the rate of 
change of � with respect to time (the slope of the curve) is 
at first large, when � is large, but slows down progressively 
as ��0. The rate at which the angle � is reduced is deter-
mined by the quantity AB; the time that it takes for � to be 
reduced to 0.368 (= 1/e) of �0 is equal to 1/AB, which is 
termed the time constant of the system: the smaller AB, the 
more slowly � is reduced. 

Frequency analysis  
So far I have assumed that the light source is fixed. 

This may be realistic for light sources, but it certainly isn’t 
true of prey items, for example, for the tracking of which 
predators possess comparable feedback mechanisms. What 
if the controlling (feedback) input varies with time? 

Before looking at more theory, let’s consider the 
kind of experimental results we want to explain. We will probably be interested in the limits of 
the system: Can the animal track any moving target, or just slowly moving targets? If so, how 
slowly must they move? If it fails to track, how does the behavior break down? Does the animal 
just stop tracking completely (remain motionless); does it track out of phase (i.e., look left when 
the light is on the right and vice versa); or does it begin to oscillate wildly from side to side? Does 
the tracking break down gradually or all at once? 

To answer these questions we need to present the animal with a target that moves from 

Figure 3.8. Output variable (�: heading 
of tropotactic animal) of a simple inte-
gral-controlled servo-system following a 
“step” input (i.e., system starts with a 
fixed displacement between initial and 
desired orientation). Curve is a plot of 
Equation 3.10 in the text with �0 =10º 
and AB = 5. 

� 
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side to side at different frequencies and in different time patterns. For each input time pattern (x(t) 
in Figure 3.6) we will obtain a comparable output pattern of angular variation (y(t)). A useful ex-
planation should summarize the results of all possible such experiments — give us y(t) for any 
x(t). 

The theoretical problem can be handled in two main ways. One is simply an extension of 
the analysis already described: The constant term, a (the 
bearing of the light source), can be replaced by a time 
function, a(t), and the resulting differential equation 
solved directly for particular forms of a(t). This is tedious 
and may be difficult in particular cases. The second way 
is simpler, providing the system is linear, that is, describ-
able by a linear differential equation (I explain the impli-
cations of this in a moment). 

For those with an interest in the mathematical ba-
sis for the ensuing arguments, I present a summary of lin-
ear-systems analysis in the Notes to this chapter.5 The ba-
sic notions can be explained without mathematics in the 
following way. Problem: To describe the input-output 
behavior of a system 
to all possible time-
varying inputs. How 
can this be done 
without having to list 
every possible input 
and its output? Sup-
pose that the follow-
ing three conditions 
are met: 

1. The response 
of the system to a simple periodic input can be described by 
two quantities: the phase relation between input and output, 
that is, how much does the output lag behind the input; and 
the relative amplitude of the output and the input (system 
gain), that is, is the output smaller (or larger) than the input, 
and by how much? 

2. Any periodic waveform (or any aperiodic waveform 
of finite duration) can be built up by adding together simple 
periodic waveforms. 

3. When two or more simple waveforms are added to-
gether and presented as input, the resulting output is what 
would be expected if the two bad been presented separately 
and their separate outputs added together; that is, the effect 
of a simple waveform on the output is the same whether it is 
presented by itself, or summed with others. This property is 
known as superposition; together with the first property it 
means that the system is linear. 

I have not defined what I mean by “simple periodic input,” but for the purposes of this ar-
gument it is any kind of cyclic variation that passes through the system without distortion — the 

Figure 3.10. Graphic illustration of 
Fourier analysis of a period signal 
(bottom panel) decomposable into 
two sinusoidal components in har-
monic relation to one another (top 
two panels: fundamental at top, first 
harmonic in the middle). At any 
point on the time axis, the amplitude 
of the compound wave is equal to 
the sum of the amplitude values of 
the two component waves. 

Figure 3.9. A sinusoidal input (top 
panel) shifted in phase only or amplitude 
only (bottom panel). In real control sys-
tems amplitude change is almost always 
accompanied by a phase shift. 
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shape of the output is exactly the same as the shape of the input. Thus, phase and amplitude are 
the only two properties of the output that can be different from the input. 

The point of these three conditions is that when they hold, we can summarize the proper-
ties of the system by two functions of frequency: a function showing how the ratio of input ampli-
tude to output amplitude varies with frequency (this is termed a gain plot); and a function show-
ing how phase lag depends on frequency (this is termed a phase plot). The two curves together are 
termed a Bode plot; I show an example in a moment. If we know the Bode plot, and the compo-
nent waveforms in the input, we can predict the output. 

    It turns out that many real systems obey these three conditions well enough to be useful. 
The first condition is satisfied by the sine wave (the pattern traced out on a moving paper by a 
swinging pendulum): a sine wave passes through a linear system without distortion. Examples of 
sine waves, changed in phase and amplitude, are shown in Figure 3.9. The second condition was 
shown to be analytically true by the French physicist Fourier: Any periodic waveform can be built 
up out of sine waves of frequencies N, 2N, 3N, etc., where N is the fundamental frequency and the 
others are harmonics. Figure 3.10 shows how a complex waveform 
can be built up out of (or analyzed into) two sine-wave compo-
nents. The third, superposition, condition is satisfied by many natu-
ral systems, providing the input amplitude is relatively small, since 
the independence of input components depends on their sum not 
being too large. If the input amplitude is too large, real systems of-
ten cannot follow, so that the output signal is clipped. This is one 
kind of ceiling effect (see Chapter 2). 

     Figure 3.11 shows an example of a Bode plot.  The upper 
panel shows gain in decibels (dB), a logarithmic unit, so that equal 
differences represent equal ratios of output to input.  The lower 

panel shows the phase lag, in 
degrees (360º represents one 
cycle at the fundamental fre-
quency), as a function of fre-
quency, also in logarithmic 
units. The behavior shown here 
is typical of many real systems: 
At low frequencies the output 
faithfully matches the input, 
gain is close to unity (zero on 
the log scale) and phase lag is 
small. As frequency increases, gain decreases and phase lag 
increases (indeed, in so-called minimum-phase systems, the 
two are interrelated). 

The phase-amplitude-frequency information in a Bode 
plot is summarized mathematically by the system transfer 
function, which is described in more detail in note 5. In most 
respects, the transfer function can be treated as a simple mul-
tiplier. Its usefulness can be illustrated in the following way. 
The first step is to modify the generalized feedback diagram 
seen earlier in Figure 3.6 to incorporate the notion of a set 
point. 

The modified diagram is shown in Figure 3.12. It has three elements: a transfer (control) 
function for the organism, G; a transfer (feedback) function for the environment, E; and a com-
parator, which subtracts the feedback input, x, from a set point, X0. The difference between x and 

Figure 3.11. Bode plot for the 
exponential lag: G(s) = a(s + a). 
Top panel: gain as a function of 
input frequency (both in log 
units). Bottom panel: phase as a 
function of input frequency. 

Figure 3.12. Conventional diagram 
of a control system: G is the transfer 
function of the organism, E the 
transfer function of the environment 
(feedback function), x0 is the set 
point, which may be external, as in 
a servomechanism, or internal, as in 
a regulator. The environmental 
impact, x, is subtracted from the set 
point at the comparator, indicated 
by the circle and cross. The net 
input then goes to transfer function 
G.   



Staddon  AB&L: Chapter 3 

 3.11   

x0 is the input to G. The comparator and G are both inside the organism, as indicated by the 
dashed line; x0 may be a purely internal reference, as in homeostatic mechanisms such as tempera-
ture regulation in which case the environment enters in as perturbations of input, x — or it may be 
an external input, as in orientation, where x0 is given by the location of the (moving) object to be 
tracked. (In the first case the system is termed a regulator; in the second a servomechanism.) The 
input and output variables x and y are frequency functions, as explained more fully in note 5. Be-
cause the feedback term, x, is subtracted from the set point, x0, the feedback is negative and the 
function of the system is to diminish the difference between x and x0. 
 G and E can be treated just as multipliers (gain functions). Thus, if the input to E is y, its 
output will be x = Ey; similarly the input for G is x0 - x and its output is G(x0 - x). The two simple, 
linear equations describing the relations around the loop are therefore 
                               x = Ey  (feedback function),                                 (3.11) 
and 
                                                    y= G(x0 - x)  (control function).                                 (3.12) 
Eliminating y between the two equations and rearranging yields 
                                                       x = x0GE/(1 + GE),                                                           (3.13)                                                   
which is the fundamental feedback equation. 

     There are three things to notice about Equation 3.13. First, there will always be some 
discrepancy between the set point, x0 (zero retinal disparity in the tropotaxis example) and the ac-
tual input, x (actual retinal disparity will always be greater than zero for a moving target). The 
size of this error is inversely related to the product of the two gains, EG: the larger the loop gain, 
the smaller the error. Second, the gain terms (transfer functions) around the loop combine multi-
plicatively. Third, negative feedback reduces the net gain of the system, but at the same time en-
sures that the relation between x and x0 is relatively insensitive to the absolute value of loop gain, 
providing it is fairly large: as xxGE

.0
, →∞→  In any real control system, components such as 

muscles or motors are liable to deteriorate with time, so that an arrangement that protects per-
formance from these effects is obviously of great value. Hence feedback systems are widespread 
in engineering and biology. 

Equation 3.13 is a general description of any control system. Even if E and G are inter-
preted just as static multipliers (not transfer functions) this equation provides a passable model for 
feeding regulation that can explain otherwise puzzling properties of food intake and its relation to 
the taste of food and the effort necessary to obtain food (see Chapter 6). Many properties of rein-
forcement schedules can be elucidated by looking for the properties of reward and punishment 
that act as feedback to the animal (see Chapters 5 and 7). 

Three simple feedback responses.  
A linear system is completely defined by its Bode plot, which gives its response to all fre-

quencies. This suggests two ways to discover the properties of a linear system: systematically pre-
sent sine waves across the whole range of frequencies and measure the system output; or present a 
brief signal whose spectrum contains all frequencies (recall Fourier’s theorem that any signal of 
finite length can be broken down into a series of sine-wave components). The first method is 
called frequency analysis, and the second (which is much more useful) is known as transient 
analysis. Signals particularly useful for transient analysis are the unit impulse (a very brief 
“spike” input) and the step input, since both these signals are made up of all frequencies, from the 
lowest (since the signal occurs only once its “fundamental” is at zero) to the highest (since both 
signals change level at an infinite rate, they must have components of infinite frequency). It turns 
out that a system’s response to a step or an impulse is a unique “signature” that defines all its 
properties.  This is why the quality of the “click” you used to get (in the days of vinyl) by touch-
ing the pickup stylus was a good indicator of the fidelity of a sound system. 
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There are three simple responses to a step input, and many natural systems correspond to 
one of these or to some combination. They are shown in Figure 3.13. The tropotactic system cor-
responds to either the exponential lag or the exponential lead, depending on how we define the 
dependent variable: If we are measuring �, the angle between the animal and the target, then the 

system is an exponential lead — � decreases with 
time after the initial target displacement. If we are 
measuring the angle between the animal’s current 
and initial positions, then the system is an exponen-
tial lag — the angle begins at zero and increases in 
negatively accelerated fashion to a maximum. The 
third response, simple oscillation, would be pro-
duced by a step input if our tracker behaved like a 
pendulum, that is, no friction, a restoring force pro-
portional to displacement, and (a key element) some 
inertia. Since a real animal will have some inertia we 
might expect some oscillation in response to rapidly 
moving targets, and a step response similar to the 
damped oscillation in the bottom panel of Figure 
3.13. 

The exponential lag and lead both correspond 
to first-order systems (i.e., differential equations 
containing only first derivatives); these responses are 
derived formally in note 5. Oscillatory responses re-
quire at least a second-order system. 

Numerous behavioral effects look like expo-
nential lags. For example, many experimental situations show “warm-up” effects in which the or-
ganism takes some time at the beginning of each experimental session to come up to its stable 
level of performance. This effect is common in shock-postponement schedules, where an animal 
such as a rat is pressing a lever to avoid periodic, brief electric shocks.  Motivational variables 
often show lagged effects: A sudden reduction in daily food intake shows up only gradually in a 
reduction of body weight. Adaptation and habituation are examples of exponential leads: A step 
change in stimulation produces an initial response that wanes with time. Pure oscillatory re-
sponses to stimulation are rare in the animal world, because they imply instability and a loss of 
contact between the organism and its environment; damped oscillation is commonplace, however, 
in systems where rapidly moving objects must be tracked and the physical mass of the animal’s 
head and body enters into the feedback equations. 

These three linear processes, plus a few nonlinear processes, such as delay (see the discus-
sion of reflex latency in Chapter 2), account for most of the simple orientation mechanisms al-
ready discussed, for many physiological processes, such as aspects of temperature regulation and 
motor performance, for prey tracking in mantids and other animals, for simple reflexes such as 
pupillary contraction to light, for aspects of food and water regulation and even copulatory behav-
ior, and for many aspects of operant behavior to be described in later chapters. 

 

Figure 3.13. Simple responses to a step-
function input. Panel A: input as a function of 
time. Panel B: exponential lag response. Panel 
C: exponential lead response. Panel D: oscilla-
tory response. Panel E: combination exponen-
tial lead and oscillatory response (damped os-
cillation). 
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When is feedback useful?  
Feedback mechanisms are found whenever the animal must cope with unpredictable varia-

tion, either in the external world, or in the properties of its own muscular system. Most motor 
skills involve feedback, because hand-eye coordination must change to accommodate growth and 
variation in muscular strength.  On the other hand, feedback slows the response of any system (I 
show this formally in note 5, but it is pretty obvious intuitively). Consequently, activities that 
must be carried out rapidly usually do not involve feedback. For example, Mittelstaedt has shown 
that the praying mantis aligns itself with its prey using visual feedback but its strike is entirely 
ballistic and unguided. Thus, if the animal’s “prewired” setting is wrong, the strike shows a con-
stant error that never improves, there is no learning. The feedback that gets the “prewired” setting 
right is at the evolutionary level — phylogenetic, not ontogenetic. Evolution selects efficient 
strikers, not efficient strikes, as in the orb-weaving-spider example with which I began Chapter 2.  

Even a vertebrate such as the frog shows persistent strike errors following surgical inter-
vention. In a series of classic experiments, Roger Sperry6 interchanged the optic nerves between 

the two eyes of immature frogs. When the 
frogs matured, they struck to the left when a 
fly was on the right, and vice versa, and 
these errors were not corrected with practice. 
Baby chicks with prism lenses on their eyes 
that shift the world over a few degrees peck 
to one side of the grain.  Their pecks cluster 
more tightly as they mature, but the constant 
error remains (Figure 3.14). 

Much human behavior can be either 
ballistic or feedback-guided, at the option of 
the individual. The Harvard physiological 
psychologist Karl Lashley raised the prob-
lem of feedback in connection with behav-
ioral sequences, such as skilled typing or the 
arpeggios of the expert pianist, which occur 
too fast for tactile sensations from one key-
stroke to affect the next:7 How are they or-

ganized, if not by feedback about the success or otherwise of each movement? What is being exe-
cuted is not individual movements, one after the other, each guided by feedback, but a prepro-
grammed pattern of successive responses. There is feedback (the pianist will eventually notice if 
he has made a mistake), but not on a response-by-response basis: keystroke N might be affected 
not by the outcome of keystroke N-1, but by the effect of some earlier keystroke, say N-4. By al-
lowing feedback to be delayed, the rapidity of a movement is limited only by muscle speed. On 
the other hand, feedback is not omitted entirely. 

The difference between this system and the moment-by-moment one is in what is affected 
by feedback. In a moment-by-moment system, each response as it occurs is guided by feedback as 
in threading a needle, or when first learning to type, for example. In the arpeggio and prism-
adaptation systems, the parameters of a ballistic motor program are adjusted on the basis of feed-
back from successive responses. This is a form of learning and allows the animal to anticipate fu-
ture stimulus-response relations, because it is adjusting its “strike” for future action based on a 
history of past hits and misses — implicitly assuming that the world in the future will be essen-
tially the same as the world in the past. A feedback system of this sort is sometimes termed a 
mesh system. 

Thus, both mantids and people respond ballistically when speed of response is critical; but 

Figure 3.14. Left panel: chick with prism goggles. Right 
panel: clustering of pecks at a nail-head embedded in a 
soft surface as a function of age in normal chicks and 
chicks reared with prism goggles. (From Hess, 1956.) 
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people (and some other mammals) can both alter the parameters of the ballistic system (as in their 
adaptation to prism lenses) and deal with the inevitable delays when feedback is allowed to lag 
behind action (as in fast typing).  A ballistic system may itself be the result of learning: Ballistic 
typing only develops after a hunt-and-peck stage in which each keystroke is feedback-guided. 

Feedback increases phase lag, which may, in turn, contribute to instability. Notice that in 
the Bode plot in Figure 3.11 phase lag increases with frequency. This is almost universal in real 
systems. The lag in Figure 3.11 does not go beyond 90º (a quarter of a cycle), but in many sys-
tems can go to 180º or more. At a lag of 180º, the output of the system is at its minimum when the 
input (to the set point) is at its maximum, and vice versa. Consequently, negative feedback, which 
is a stabilizing effect, has been turned into positive feedback, a destabilizing, “vicious circle” ef-
fect. It is not surprising, therefore, that many feedback systems get into difficulties at high fre-
quencies. The ability to adjust system parameters, and to anticipate regularities in the input, are 
important protections against this kind of instability.  

THE INTEGRATION OF BEHAVIOR 
English writer H. G. Wells (War of the Worlds) once remarked that “The end of all intelligent 
analysis is to clear the way for synthesis.”  There is little point in breaking down the behavior of 
animals into simple units, be they reflexes, servomechanisms or “elementary information proc-
esses,” if we cannot use these units to understand the behavior of the whole animal in its natural 
environment.  The only way to tell if we have all the pieces of the puzzle is to put them together 
and see if we have reconstructed the natural behavior of the animal.  I first discuss the role of vari-
ability in behavioral integration, then give examples of how a few simple mechanisms, acting to-
gether, can produce quite flexible and adaptive behavior. 

 The initial problem is to account for variability in behavior: If we have a well-defined set 
of elementary processes, it is natural to expect that they should lead to unique predictions about 
behavior — yet behavior is often unpredictable. What is the adaptive utility of behavioral varia-
tion, and on what does it depend?8 

In cases like the simple kineses discussed in Chapter 2, the variability is intrinsic to the 
mechanism and serves the function of random sampling of an unknown environment. In other 
cases, a degree of variability even in an otherwise determinate mechanism can prevent the animal 
from getting trapped by particular circumstances. For example, a tropotactic animal that adjusts 
its orientation so as to balance the stimulation from bilateral receptors would pass completely be-
tween two equal lights and never reach either, if its mode of movement were completely regular. 
A little variability allows it to find the other balance point that involves going straight to an adja-
cent light even though it started out going between the two lights. 

Variability is also helpful in getting around obstacles. Many insects are photo-positive in 
dim light and everyone has seen flies and other insects trapped in a room buzzing at the window. 
The fly does not search systematically for a way out, but if a gap exists the animal’s random 
movement will eventually find it. As wasteful as it appears, the fly’s random buzzing is much 
more successful than would be a precise homing mechanism that simply settled down at the light-
est part of the windowpane. 

 Different individuals of the same species often behave differently under similar condi-
tions. For example, photonegative Ephestia (meal-moth) larvae move generally away from a 
source of light, but different individuals show different amounts of error and the distribution of 
heading angles of a group of larvae is approximately normal (i.e., the bell-shape characteristic of a 
process determined by many independent causes). The nauplius larvae of the barnacle Balanus are 
a more interesting case: Some are photonegative and some photopositive, so that the distribution 
of heading angles to light is bimodal. Such bimodal distributions, an example of behavioral poly-
morphism, are quite common, and quite puzzling at first sight. 

The functional basis for behavioral polymorphism seems to be a type of frequency-
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dependent selection where the Darwinian fitness of one type of behavior is inversely related to its 
frequency relative to the other. For example, suppose that a particular prey species can find food 
in two different types of habitat that are not spatially contiguous; predators must decide to hunt in 
one or the other. Clearly it pays the predator to spend most of its time in the more popular habitat. 
Hence a prey individual that prefers the less popular habitat will be at an advantage. This system 
ensures that approximately equal numbers of prey individuals will be found in both types of habi-
tat.9 

Behavioral polymorphism can take two extreme forms: either the same individual can 
show two or more modes of action at different times, or there may be two or more types of indi-
vidual, each showing one mode. Both kinds of variation are found, but the first kind is potentially 
more flexible, as it allows for the evolution of systematic variation: that is, selection by the animal 
of one mode or the other, depending upon circumstances. Systematic variation tends to be the 
strategy increasingly employed by mammals and other “higher” animals. In a simple form it is 
common even in invertebrates. For example, the protozoan Euglena is photo-positive in weak 
light and photo-negative in strong light. Consequently the animals congregate in intermediate lev-
els of illumination that may represent an adaptive compromise between the bright light that pro-
vides maximum energy from their photosynthetic organ and the dim light that provides greatest 
safety from predators. Some individual cockroaches, Blatta orientalis, are hygro-negative (avoid 
high humidity), but after some time in dry air they lose water by evaporation and then become 
hygro-positive. In mammals and birds a change of this sort would be termed a motivational one, 
caused by an altered physiological water balance. Reactions also change as a function of time: 
habituation, warm-up effects, and circadian and other rhythms are examples that have already 
been discussed. A taxis may even reverse periodically, as in the Mysis crustaceans in the Naples 
aquaria. 

The sense of a taxis may change as a function of some quite different variable. For exam-
ple, under suitable conditions, Paramecium is geo-positive (it descends) in light, and geo-negative 
in darkness. Many marine invertebrates show a similar reaction, which may be designed to vary 
the animal’s depth as a function of the time of day. The water flea, Daphnia, shows an interesting 
adaptive response to an increase in the carbon-dioxide concentration: It becomes photo-positive, a 
reaction that would normally take it to the water surface where the CO2 concentration is likely to 
be lower and the oxygen tension higher. Exposure to dry air tends to make the woodlouse (sow-
bug), Porcellio, photo-positive rather than photo-negative. This case is more puzzling because it 
seems very unlikely that light is a reliable cue to humidity for this animal; indeed, in general, the 
opposite is more probable: Dark places such as crevices and holes are much more likely to be 
damp than bright, open areas. However, evidently the woodlouse, like a good politician, is a 
pragmatist: Ideology may say that dark means damp, but if one is in the dark, and dry, then maybe 
light is worth a try. This mechanism is a primitive, built-in, version of the “win stay, lose shift” 
strategy of trial-and-error learning in higher animals. 

A simple set of mechanisms may, in combination, yield remarkably intelligent behavior. 
Consider the behavior of the sea-snail Littorina neritoides, as analyzed by Fraenkel: 

 
This animal is found several metres above high-water marks of European seas. It is usually geo-
negative and never geo-positive. When out of water it is always photo-negative. In the water it is 
too, except when it is upside down, and then it is photo-positive. . These reactions may be ex-
pected to guide the animal from the bottom of the water to rocks (dark) and then up the rock face 
(geo-negative); if the light is very bright, the animal stops and settles down at the water surface. In 
crawling up under water, if it gets into a deep horizontal cleft, negative photo-taxis takes it in-
wards on the floor, negative geo-taxis upwards on the end wall, and positive photo-taxis outwards 
on the roof in the inverted position. Upward progress is therefore not barred by such a cleft. Above 
the water surface, the sign of photo-taxis does not reverse in this way, so the animal comes to rest 
in such a cleft. Under the influence of dryness and other unfavorable conditions the animal closes 
up; it may then fall back into the sea, but if conditions are not very unfavorable it may live for 
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months out of water. This behavior provides examples of taxes in opposition (gravity and light) 
and of one stimulus (the presence of surrounding water) affecting the response to another (light).  
(Fraenkel & Gunn, 1940, pp.297-298) 

 
In these examples the animal’s response to one 

variable, such as light, is modulated by another, contextual, 
variable, such as gravity or whether the animal is in or out 
of water. Often, however, two or more variables may each 
have an independent taxic effect; for example, both geo-
taxis and phototaxis may operate simultaneously. What 
happens when these variables act in opposition, if negative 
geotaxis dictates upward movement, say, and negative pho-
totaxis urges downward movement, away from the light? 
Here, as in the case of opposed reflexes, there are only two 
possibilities — competition or cooperation. Most taxic 
mechanisms appear to interact cooperatively. For example, 
a slug placed on an inclined plane turns so that it travels 
straight up the plane, along the line of greatest slope (it ap-
pears to accomplish this by equalizing muscle tension on 
both sides of the body). Slugs are also negatively phototac-
tic, and if a light is shone on the animal from one side as it 
moves up the plane, it will turn away and adopt an interme-
diate orientation; the stronger the light, the greater the turn-
ing away and the larger the angular deviation from a 
straight upward path. The animal’s direction of movement 
can be modeled here as the resultant of two vectors, one 

representing the slope of the plane and the other the direction and intensity of the light, as illus-
trated in Figure 3.15.  Under other circumstances one reaction may totally dominate the other, 
particularly if one is a protective reaction of some sort such as the withdrawal reaction shown by 
Stentor and other small, sessile invertebrates to a passing shadow. 
      These two kinds of combination rule, cooperation and competition, are not, of course, per-
fectly distinct, but merely extremes along a continuum. At one end the effects are additive (lin-
ear); this is cooperation. At the other end is total competition: The response with greatest strength 
occurs exclusively and the other is completely suppressed (nonlinear). As in reflex interaction, 
which of these possibilities actually occurs no doubt depends on the Darwinian fitness of inter-
mediates: When a compromise is less adaptive than either alternative alone, as in the feeding ver-
sus flight choice for Stentor, one or other will occur exclusively. 

There seems to be a trade-off across animal species between systematic and unsystematic 
variation. Systematic variation means that the rules the animal plays by depend upon the situation, 
on contextual variables such as time of day, condition of light, presence of another animal, and so 
on. In each situation, the animal’s behavior may be very predictable, yet the animal may be sensi-
tive to many different situations (not all of them, perhaps, known to an outside observer) so that 
its overall repertoire of behavior may be large. Unsystematic variation means that the animal al-
ways plays by the same set of rules, but these include a substantial unpredictable element — kine-
ses are the obvious example. There seems to be a trade-off in the sense that the more predictable 
the animal in any particular situation, the richer the variety of situations to which it is sensitive. 
Human beings can carry out particular tasks with enormous precision, for example, yet there is no 
denying their unpredictability in general, or its dependence upon the individual’s perception of 
situation.10 

Figure 3.15. Vector model of the 
combined effect of negative geotaxis 
(tendency to move directly up the 
slope of a plane) and negative photo-
taxis (tendency to move directly away 
from a light).  (Adapted from Crozier 
& Cole, 1929). 
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THE NATURE OF EXPLANATION 
The emphasis of this book is on explanations for behavior in purely environmental terms: I ask, 
How does the animal’s past history interact with rules built in to the animal by its evolutionary 
history and individual development to produce future behavior?  I am not directly concerned with 
the animal’s internal structure, or with intentional states we can relate to our own introspections 
(see Chapter 1). Since there is often confusion about the meaning of explanations at this level, I 
conclude the chapter with brief discussions, first of “black-box” explanations, and then of the re-
lation between feedback theory and explanations of behavior in terms of motive and purpose. 

The meaning of “black-box” analysis 
Scientific explanations can be at many levels. The behavior of a moth circling a flame 

might be explained in a number of ways: (a) as an “instinct”; (b) as a form of taxic reaction (e.g., 
light-compass reaction); (c) as a particular kind of control system; or (d) as the response of a par-
ticular neural network connected to a set of receptors and effectors. 

The instinct account says nothing about the process involved; it is really just a kind of 
classification. It places the moth’s behavior in a group containing all those behaviors that seem 
not to depend on experience. Although this is a relatively primitive kind of explanation, it is not 
empty; it may in fact be essential to go through such a “natural history” stage at the beginning of 
any science.  

Explaining the behavior as a taxis is also classificatory, but now in terms of the results of 
experiments — unilateral blinding, the two-light experiment — and begins to get much closer to 
the underlying process. 

The control-system account depends on more experiments and more quantitative results 
and constitutes an explanation in terms of process.  It gives the “rules of the game,” those aspects 
of the behavior that are invariant, that is, independent of particular inputs and outputs (recall the 
constancy of the transfer function of a linear system).  However, the control-system model is a 
black-box account: The equations of the model, and the boxes and connecting arrows that make 
them easier to understand, may have no necessary relation to with the elements of the fourth level 
of explanation: an account in terms of neural and other structures. Nevertheless, the control-
system account says what the neural structures must do, and gives hints on how they might do it. 
But block diagrams cannot be interpreted literally as connections among neural circuits. 

Black-box accounts provide a natural preliminary to accounts at the fourth level, in terms 
of neural structures, but cannot be directly interpreted in neural terms (see note 2, Chapter 2). 

The lack of relation between block diagrams and the physical constitution of the system is 
especially obvious if we are modeling a real physical system. For example, the exponential lead 
describes the relation between current (output) and voltage (input) across an electrical capacitor 
(essentially a pair of parallel plates capable of storing a quantity of electrical charge): If the volt-
age across the capacitor is suddenly increased, there is an initial large current flow that subse-
quently decays to zero. Where is the “loop” here? There is no physical link corresponding to the 
feedback path in Figure 3.12, nor is there anything corresponding to a comparator or a set point. 
There is negative feedback, but it is in the form of the increased repulsion among charges as the 
number of charges on each plate increases. Many other physical and biological systems behave 
like exponential leads: a spring-loaded dashpot, a pendulum in molasses, and the inflow of organ-
isms into a suddenly denuded habitat. The negative feedback (restoring force) in the first case is 
the spring; in the second, gravity; and in the third, competition among individuals for limited re-
sources. 

Each level of explanation has its uses. Explaining the moth’s circling in terms of instinct is 
a useful starting point for the student of behavioral development and it may have implications for 
the evolution of behavior. The taxis account relates the behavior to other orientation reactions, 
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and may be useful for understanding species differences. The control-system account is useful for 
making quantitative predictions, and as an element in accounts of the integration of behavior, that 
is, in theories which bring together a number of mechanisms so as to account for something ap-
proaching the organism’s total behavioral repertoire. 

Purpose, teleology, and mechanism 
The concept of purpose has occupied a prominent place in the history of psychology. Dis-

dained by behaviorists, it is covertly retained even by them in the form of so-called “control of 
behavior by its consequences.” Alert readers may have noticed that the set point of a feedback 
mechanism (the sollwert or “should-be value” in German) corresponds pretty closely to the intui-
tive idea of a “goal” or “motive.” This connection was pointed out some years ago in a classic 
philosophical paper by Rosenblueth, Wiener, and Bigelow (1943) in which they showed that the 
idea of feedback provides the conceptual link between mechanistic accounts of behavior, that is, 
explanations in terms of antecedent events (proximal causes), and teleological accounts, that is, 
explanations in terms of goals or motives (final causes). The superiority of a feedback account 
rests in its self-contained ability to account both for those cases where the goal is attained, and 
those where it is not. The former simply represent the domain of stability and negligible phase lag 
of the system, the latter its region of large phase lag and instability. 

Commonsense explanation in terms of purpose does not easily account for failures to 
achieve a goal. For example, a student may do well on an organic chemistry examination, and 
this might be attributed to his goal of getting into medical school (say).  But suppose he fails the 
exam, despite strong motivation to succeed?  Explanation in terms of goals or motives must then 
postulate some competing motivation — he may have spent too much time with his girl friend, 
perhaps — or else say something about the student’s capabilities and his methods of study, that 
is, resort to a mechanistic account.  In short, conventional motivational accounts offer only two 
explanations for failures to achieve an objective: either competing motives, or an unsuspected 
structural limitation. 

Both these escape routes have an ad hoc look to them, yet they roughly correspond to re-
spectable explanatory alternatives: an optimality account, that provides the laws by which motives 
compete, and a mechanistic account, that dispenses with motives entirely and explains behavior 
by antecedent conditions and structural properties of the subject (see Chapter 1). 

Different fields have inclined more to one or the other type of explanation. Classical eco-
nomics, for example, explains people’s allocation of time and money between different commodi-
ties, or between work and leisure, in terms of a balance of motives, a teleological account. The 
individual is assumed to optimize his total utility by allocating his resources so that the marginal 
gain from switching from one thing to any other is constant; that is, he spends so that his last 
nickel will buy him the same benefit, no matter where he spends it (equal marginal utilities). In 
this way, total benefit will usually be maximized. Optimality analyses (about which I shall have 
much more to say in later chapters) are the ultimate form of teleological account. On the other 
hand, the field of ecology, which has much in common with economics as the etymology implies, 
has generally favored mechanistic accounts: The distribution of species within and between habi-
tats is usually explained in terms of their relative efficiencies and reproductive rates. 

Psychology and behavioral biology have at different times favored both approaches. Rein-
forcement theory is basically teleological in the sense that behavior is assumed to be guided by 
access to a key event, the reinforcer, which in effect functions as a goal: The animal works for 
food or to avoid electric shock. Purposive terminology is studiously avoided, but the lack of any 
generally accepted mechanism to account for the effectiveness of reinforcers means that the term 
reinforcement is actually used as if it meant “purpose.” For example, when several experiments 
showed a few years ago that hungry rats would press a lever for food even if free food were avail-
able, a popular response was that the lever-pressing behavior was “self-reinforcing.” The differ-
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ence between this and the naive explanation that the animal “likes” to press the lever may be too 
subtle for the naive reader to detect. As we’ll see in later chapters the essence of reinforcement, 
both as an effective procedure and an explanation of behavior, is restriction of access, so that the 
notion of self-reinforcement (as a sufficient explanation for behavior) is a contradiction in terms. 

Other areas of psychology have looked for mechanistic accounts. For example, Hullian 
theories of learning, though now of largely historical interest, were a praiseworthy attempt to 
specify the causal links between the stimulus, as cause, and the response, as ultimate effect.11 
More recent mathematical and computational theories of classical conditioning and the effects of 
food and other hedonic stimuli on general activity (arousal) are strictly mechanistic, looking to 
antecedent, rather than consequential, events for the explanation of behavior. Theories that ex-
plain choice and the distribution of behavior in terms of competition between the tendencies to 
engage in different activities are also, like their ecological counterparts, mechanistic in spirit. 

Both mechanistic and teleological accounts have their uses, although mechanistic theories 
are obviously desirable where they are possible. But when the means an organism, or an econ-
omy, can use to attain some end state are many and poorly understood, but the goal is relatively 
clear, then a teleological theory may be the best that is available (see Chapter 1). An adequate 
teleological explanation (like the empirical principle of reinforcement) is certainly better than a 
premature mechanistic theory, as Hull and his followers found to their cost. 

SUMMARY 
The mechanisms discussed in this chapter and the preceding one represent the best that animals 
can do when limited to what might be termed local memory, that is, when their behavior is af-
fected only by present events and events in the immediate past in an essentially context-free way.  
Although simple, and relatively easy to analyze, these mechanisms can nevertheless produce re-
markably flexible behavior. In the rest of the book, the emphasis is on learned behavior, that is, 
behavior that is context-sensitive and depends on more remote past history. 

Learned behavior can be studied in two ways: as learning, that is, as a change in behavior 
with time and experience; or as habit, that is, as a more or less fixed pattern, built up after much 
experience. The study of habit has the advantage that like the mesh feedback systems discussed 
earlier, once set up, habits may show rather little dependence on past history. They can be stud-
ied like orienting mechanisms, in individual animals, using reversible procedures. The next sev-
eral chapters look at learning from this point of view. Later chapters deal with learning as 
change. 

 

NOTES 
1. This limitation is a general feature of all hill-climbing mechanisms: They find their way to the 
top of a hill, but not necessarily the highest hill. They are local rather than global optimizers. 
 
2. Contrast mechanisms. The initial advance in understanding these rate-sensitive effects of sen-
sory mechanisms was made by the Austrian physicist and philosopher Ernst Mach (1838-1916). 
Floyd Ratliff, in his book Mach Bands (1965), has provided a fascinating account of Mach’s sen-
sory work and translations of relevant papers, as well as a summary of more recent work on the 
problem. See also Arend, Buehler, & Lockhead (1971); von Békésy (1967); and Ratliff (1974). 

The intimate relation between the perceptual effect of a luminance gradient and its higher 
derivatives can be seen from Figure 3.16. The top curve is a gradient of luminance as a function 
of distance, V(s), such as would be obtained from a set of progressively lighter bars (ab, cd, ef, 
etc.) separated by regions of gradually increasing lightness (bc, de, etc.). The next curve, labeled 
“response” shows the appearance of this luminance gradient. There are two features that are of 
special interest: First, the progressive change in lightness in regions bc, de, etc. is barely percep-
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tible, and the successive bars ab, cd, etc. increase but little in perceived brightness. Second, nar-
row dark and light bars (Mach bands) are seen at the points of inflection b, c, d, etc. The third 

curve shows the first derivative of the luminance curve 
and the bottom curve is the second derivative. Mach 
saw at once that the light and dark bands are derivable 
(to an approximation) from the negative of the second 
derivative of luminance, and that the perception as a 
whole can be represented as the weighted sum of the 
original luminance distribution (transformed via a 
compressive function as described in Chapter 2) and 
the second derivative of that distribution: 
                                                    

( ) ( ) ( )[ ] ,//log 22 CdsVdVBsVAsR +−=        (N3.1) 

where A, B, and C are constants, and the second deriva-
tive is multiplied by 1/V because the effect of an inflec-
tion is inversely related to the brightness level. 

Figure 3.17 is redrawn from Figure 3.2 in the 
text, with the addition of the first and second deriva-
tives. It is clear that it poses difficulties for Mach’s 
scheme (which is itself equivalent to several more re-
cent models, as Ratliff shows), since no simple combi-

nation of the original luminance distribution with the second derivative will yield the decreasing 
staircase that represents the perception. 

If for simplicity we ignore the compressive transformation (or, alternatively, simply as-
sume that V(s) is measured in logarithmic units), then Equation N3.I becomes 

 
 ( ) ( ) cdsVbdsaVsR ++= 22 / .  (N3.2) 

It is obvious that R(s) cannot be derived from this equation 
for the luminance distribution shown in Figure 3.17. How-
ever, Equation N3.2 can be rewritten in a way that immedi-
ately suggests a modification to accommodate Figure N3.2 
and related effects. First, we rewrite Equation N3.2 in terms 
of first and second derivatives only: 
                                                      

( ) ( ) ( )� ′+−=
s

cdsVdbdsdsdVasR
0

22 // .                  (N3.3) 

(The integral term reduces to V(s) - V(0), so that V(0) is in-
corporated in a new value of the additive constant, c’.) Equa-
tion N3.3 is equivalent to Equation N3.2 save for the as-
sumption that absolute values of V(s) are not sensed directly, 

but rather affect sensation via the integration of the first derivative. Whatever the stimulus aspect 
that is sensed by a sensory system, there will always be a threshold. If rate of change of lumi-
nance, rather than absolute luminance, is important, then there will be a rate of change so slow as 
to have no effect. The value of this threshold will presumably be related to the difference limen 
(differential threshold) for brightness. Thus, the term dV/ds in Equation N3 .3 refers only to su-
prathreshold values of dV/ds. 

The implications of this change can be seen in Figure 3.17 where the threshold is indi-
cated by the two dashed lines (two because the first derivative can take on negative as well as 
positive values): The small positive values of dV/ds associated with the gradual part of the 
sawtooth are below threshold and therefore do not contribute to the integral, whereas the large, 

Figure 3.17. A sawtooth luminance 
gradient (in logarithmic units, top 
curve), its perception, and the first 
and second derivatives of the lumi-
nance gradient. Suprathreshold re-
gions of the first derivative curve 
are crosshatched. 

Figure 3.16. A luminance gradient (top 
curve), the perceived brightness gradient 
(second curve), and the first and second 
derivatives of the luminance gradients 
(third and fourth curves). 
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but briefer, negative values associated with the steep part of the sawtooth add to the integral 
yielding a fixed increment in the sensation at each cycle. The positive and negative parts of the 
second derivative are very close together because of the steepness of the falling part of the 
sawtooth, and so interfere with one another; since their average is zero (and since the contribu-
tion of the second derivative to perception is probably much less than the contribution of the first 
derivative), they have little net effect on perception. Thus, the perceptual effects of luminance 
gradients can be derived, to a first approximation, from the simple hypothesis that the visual sys-
tem (and other sensory systems as well) is sensitive only to rates of change. 

This analysis applies most easily to temporal variations because here the direction of in-
tegration is determined unambiguously by the flow of time: The system has no alternative but to 
integrate past stimulation up until the present. Spatial interactions are more difficult to handle: 
Should the system integrate from left to right, from top to bottom, or what? One possibility is 
that spatial changes are converted at once to temporal ones via eye movements, which occur all 
the time. Land and McCann (1971) have suggested other possibilities, based upon integration of 
differences along interconnecting paths.  

  As we have seen in previous chapters, habituation and adaptation are names for the 
processes that permit special sensitivity to changes in stimulation, and the curves in Figure 3.17, 
particularly, are very similar to those encountered earlier. For example, in Koshland’s experi-

ments on bacterial orientation a “pulse” of nutrient produced 
a transient decrease in tumbling, very like the transient in-
crease in sensation level produced by a sudden stimulus 
change in Figure 3.17.  

The transience of the stimulus effect in the bacteria 
was attributed to adaptation, which can, therefore, be seen 
simply as another name for the rate-sensitivity of many bio-
logical systems. 
 
3.  This result can be obtained as follows: Let A0 be the in-
tensity of the light source at 0 in Figure 3.18, and L and R be 
the two bilateral point receptors. Y is a point on the midline 
of the animal on the line joining the receptors and � is the 
heading of the animal with respect to the source. Receptor 
disparity is the difference in light intensity falling on the two 

receptors; by the inverse square law this is: 
                                                        ∆I = A0/0L2 - A0/0R2                                     (N3.4) 

 = A0(0R2 - 0L2)/0L20R2. 
Considering each term in the numerator separately: 

                      0R2 = 0X2 + RX2                                                (N3.5) 
0L2 = LX2 + 0X2 = (LR + RX)2 + 0X2 

=LR2 + LR ⋅RX + RX2 + 0X2. 
Substituting in Equation N3.4 yields: �I = -A0 LR(LR + 2RX)/0L20R2. But by elementary trigo-

nometry, sin � = YX/OY = (RX + LR/2)/OY; hence 
                                                         �I = -A0LR- 0Y2 sin �/0L20R2,                           (N3.6) 
 which is the stated relation. If the animal s far away from the source, so that OY»LR, then OL ≅  
OR ≅ OY, and this relation reduces to 
                                                    OYA LRI 3

0
/sin2 θ•−=∆ ,                                         (N3.7) 

so that receptor disparity is directly proportional to receptor separation, LR, and inversely pro-
portional to the cube of the distance to the source. 
 

Figure 3.18. Geometric relations 
between a light source, 0, and two 
bilateral, point receptors, L and R. 
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4. Regulatory gadgets such as the furnace thermostat and the centrifugal governor used in early 
clocks have been around for some time. The modern, quantitative study of feedback devices 
dates from James Clerk Maxwell’s paper (1868) on the centrifugal governor used in James 
Watt’s steam engine. Feedback theory received its greatest impetus during the second World 
War when tracking devices of all sorts automatic gun sights, radar trackers, homing torpedoes, 
elicited a level of public interest lacking in more tranquil times. Since then the study of control 
systems has grown into a highly developed field of largely mathematical inquiry. 

  There are now so many texts on the theory of control systems that it is hard to give an 
objective survey. The classical source is MacColl’s Fundamental Theory of Servomechanisms 
(1945), but this, although relatively easy to follow, is not explicitly directed at the novice, and 
gives no account of the now-standard Laplace transform method. Other books or papers aimed at 
biologists or psychologists are Toates (1975), a clear elementary account, McFarland (1971), 
Powers (1978), Grodins (1963), and Milsum (1966). Useful summaries of empirical and theo-
retical studies are to be found in McFarland (1974), the 1964 Symposium of the Society of Ex-
perimental Biology, Toates and Archer (1978), and Davis and Levine (1977). A comprehensive 
account of the mathematics involved is Kreider, Kuller, Ostberg, and Perkins (1966).  Much re-
cent material can now be found on the internet. 

  My account of control theory as applied to tropotaxis is, of course, greatly simplified. 
More comprehensive applications of the approach to orienting mechanisms such as the optomo-
tor response (visual following of moving stripes, shown by insects and many other animals), are 
to be found in the German literature, e.g., Mittelstaedt (an account in English is 1964; see also 
1972). 
 
5. Linear systems analysis. The three fundamental assumptions of linear systems analysis have 
been given in the text. Here I describe the Laplace transform method that allows systems of lin-
ear differential equations to be solved in an almost automatic way. 

  Recall that the properties of any linear system are completely described by its Bode plot, 
which gives the gain and phase lag for all frequencies of sine-wave input. The Laplace transform 
is a function that incorporates all the information in a Bode plot. The transform method is similar 
to the use of logarithms, a technique familiar to most people with some mathematical experience.  
Both methods change quantities into a form where they are more convenient to work with.  In the 
days before microchips, multiplication or division of large numbers was a tedious chore. The in-
vention of logarithms in the seventeenth century by the Scottish mathematician John Napier al-
lowed numbers to be converted to their logarithms, whereupon the sum of the logs yielded the 
log of the product, so that multiplication and division were replaced by the much simpler opera-
tions of addition and subtraction. The key to the simplicity of the method lay in the laboriously 
compiled tables of logarithms and antilogarithms that enabled the results of these additions and 
subtractions to be at once translated back into the raw number domain. 

Most time functions that are of practical interest can be similarly converted into their 
Laplace transforms.  So can the differential equations that describe the control function. These 
transformations allow the operations of differentiation and integration (necessary for the solution 
of differential equations) to be converted into arithmetic operations of multiplication and divi-
sion, as I show in a moment.  In this way any linear differential equation can be solved just using 
simple algebra. The solution takes the form of an expression in the complex variable s. By con-
sulting a table of Laplace transforms (analogous to a table of antilogarithms), the time function 
corresponding to this expression can then be found. 
    The Laplace transform is denoted thus: £F(t) =  F(s) where s is a complex variable con-
taining frequency, phase and amplitude information. Formally, 

                                                   £F(t) = ( ) ( )�
∞

0
exp dtsttF .                                              (N3.8) 
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For details of the derivation and the limitations that allow the integral to exist (i.e., be finite) see 
(for example) Toates (1975), Milsum (1966), or Kreider et al. (1966). The Laplace transform is 
closely related to the moment-generating function, familiar to students of probability theory. 
      The thing that makes the Laplace transform so useful in the analysis of linear systems is 
that the ratio of the output F0(s), and input, Fi(s), is constant for all inputs; this ratio is the trans-
fer function. Thus, the transfer function, G(s), is defined by F0(s) = Fi(s) · G(s). The transfer 
function behaves just like a multiplier, when input and output are expressed in terms of the com-
plex variable s. 

G(s) can be derived in three separate ways. (a) Analytically, from the differential equa-
tions of the system, if these are known. This is very straightforward because the two operations 
of differentiation and integration correspond just to s and I/s, respectively, so that £(d/dt)F(t) = 
sF(s), for example, where F(t) is some function of time. (b) From the input-output relations de-
rived from certain inputs, such as the “unit step” and “unit impulse,” that contain a wide range of 
frequencies and produce responses with a “signature” characteristic of the system. This is known 
as transient analysis. (c) From the Bode plot obtained by empirically probing the system with a 
wide range of sinusoidal frequencies; this is termed frequency analysis. 
     As an example of the derivation of G(s) from the differential equations of a system, con-
sider again the simple model of tropotaxis described by Equations 3.5 and 3.6. First, since this is 
a dynamic analysis, we can replace a and b by a(t) and b(t), indicating that both these variables 
are functions of time. Substituting in Equation 3.7 and rearranging yields: db(t)/dt = AB(a(t) - 
b(t)). Taking Laplace transforms of both sides yields: 

                    sb(s) = AB[a(s) - b(s)]. 
Rearranging so as to obtain the ratio output/input, b(s)/a(s), yields: 

                          b(s)/a(s) = G(s) = AB/(s + AB).                                      (N3.9) 
The expression on the right-hand side is therefore the transfer function for this system. The out-
put for any given input signal, a(t), can now be obtained simply by substituting the Laplace 
transform for that signal for a(s) in Equation 3.9 and rearranging to obtain an expression for b(s) 
in a form suitable for consulting a standard table. The response explored earlier is equivalent to 
the “unit step,” an instantaneous displacement of the target light from a value of 0 (the animal 
heading straight to the target) to 1. The Laplace transform of the unit step is just I/s, so that b(s) 
is equal to AB/s(s + AB). This expression does not appear in standard tables, but the expressions 
1/s and l/(s - a) do appear there. AB/s(s + AB) can be written in this form using the method of 
partial fractions, which yields: 

                      b(s) = 1/s - l/(s + AB). 
From the tables this means that 

                     b(t) = 1 - exp(-ABt),                                     (N3.l0) 
Which is just Equation 3.8 with a = 1, b0 = 0, and b = b(t). The response of this system to any 
other time-varying input can be obtained in the same way. 
     Equations N3.10 and N3.8 are termed exponential lags, and this example shows that an 
exponential lag in response to a step input is the characteristic signature of a transfer function of 
the form a/(s + a), that is, of integral control. The same information can be derived from a Bode 
plot for this system, which has already been shown in Figure 3.11, using the vector properties of 
the complex variable s. 
   Exponential lags result when the rate of change of the dependent (controlled) variable is 
proportional to the level of the independent (controlling) variable — or, equivalently, when the 
controlled variable is proportional to the integral of the controlling variable. There is obviously a 
converse process, when the controlled variable is proportional to the rate of change of the con-
trolling variable (rate control). Its properties can easily be deduced from what we already know 
about the Laplace transform method. Thus (using the same terms as before), rate control means 
that 
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b(t) = A · d [a(t) - b(t)]/dt, 
where A is a constant. Taking Laplace transforms and rearranging, as before, yields 

                b(s)/a(s) = s/(s + I/A). 
Setting a(s) equal to the Laplace transform for a step input (I/s) and rearranging yields 

b(s) = l/(s + I/A), 
so that (from tables) 

b(t) = exp(-t/A), 
which is again an exponential with time constant A. This function, the exponential lead, should 
be especially familiar as the temporal change characteristic of effects variously labeled as adap-

tation, habituation, or fatigue; that is, rapid re-
sponse to a sudden change in stimulation, such 
as the onset or offset of a light, followed by 
slow waning of response back to a low level. 

  As an example of the use of the trans-
fer function in learning about the temporal 
properties of a system, consider again the fun-
damental feedback equation (Equation 3.10). 
The transfer functions G and F are used just 

like simple multipliers in that equation, so we can use the equation to predict the effects of add-
ing a feedback loop to one of the elements shown in Figure 3.13. Consider, for example, the ex-
ponential lead. Suppose we connect it in a feedback loop as shown in Figure 3.19; what will be 
the transfer function of the combined system?  We can find out at once just by substituting the 
transfer function, s/(s + a), for G in Equation 3.10, with a feedback gain (E) of unity. The result 
is the transfer function s/(s + a/2); thus, the time constant, which was originally I/a, is now 2/a 
the system responds twice as slowly.   

This is a general result: The flexibility conferred by feedback is bought at the cost of a 
slower response. Consequently, activities that must occur as rapidly as possible often do not in-
volve feedback, as 1 describe in the text. 

 
6. Sperry (1951) is a good review. 
 
7. Lashley (1951). A now obsolete example: A rapid typist can verify immediately that his key-
strokes are not guided by immediate feedback by noting how many keys he hits after the end of a 
line is reached and the carriage will not advance further (assuming that he has already ignored 
the bell). If he is at the same intermediate stage of incompetence as I, he will type fast enough to 
hit several keys after the carriage has reached the limit of its travel. This is a measure of the time 
it takes for feedback to affect the motor program.  If you don’t know what bells and carriages 
are…never mind.  
 
8.  There is a tendency to equate unpredictability with randomness. It may be worth pointing out 
that quite simple deterministic systems can lead to behavior that looks random to an observer 
who is ignorant of the generating process.  Mathematicians have shown recently that a perfectly 
deterministic set of (nonlinear) differential equations can, nevertheless, lead to apparently cha-
otic, and certainly unpredictable, behavior (see, for example, May, 1976). Thus, unpredictability, 
from the point of view of an outside observer, does not imply absence of determinism: A system 
may be both deterministic and irreducibly unpredictable — unpredictable is not the same as ran-
dom.  (I return to this topic in Chapter 4 in connection with the concept of observability.) 
 
9.  Behavioral polymorphisms have been analyzed most thoroughly in connection with social 
behavior. Maynard Smith (e.g., 1976; see Krebs & Davies, 1981, for an elementary discussion) 

Figure 3.19. Effect of feedback on the exponential 
lead. 
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has used game theory to derive the idea of an evolutionarily stable strategy (ESS) a stable mix-
ture of behaviors that coexist in a population because of frequency-dependent effects.  ESS is 
more generally known as a Nash equilibrium, after the economist John Nash, who achieved noto-
riety unusual for a mathematician as the subject of the partly factual biopic A Beautiful Mind 
(2001).  He also shared the 1994 Nobel Prize for Economics (with Reinhard Selten and John 
Harsanyi).    
 
10. The argument here is closely related to W. R. Ashby’s (1956) law of requisite variety, which 
states that if an organism is to maintain its internal environment constant in the face of environ-
mental perturbations, the variety of its output must equal the variety of its input. This is easy to 
understand if you think of a simple tracking mechanism, such as the model of tropo-taxis dis-
cussed earlier. If the system is to continue to be aligned accurately with a moving target, then its 
correcting movements (responses) must exactly match those of the target. The ability of the 
tracker to do this is, of course, a function of its frequency response in relation to the frequencies 
in the pattern of movement of the target (which is directly related to the input variety, in the 
communications-theory sense). 

Ashby’s law (which derives from the theory of communication pioneered by Shannon & 
Weaver in 1949) refers both to the way an animal varies a single response and to its ability to 
come up with other responses if one fails. Linear systems theory is concerned more with the 
quantitative properties of a single response, such as shaft angle or voltage, to a single input, 
whereas real organisms cope with environments that require variation in the type, as well as the 
quantitative properties, of responding. The principle applies equally to both cases, however.  The 
implication of this principle is that the reciprocity between systematic and unsystematic variation 
is likely to hold good only as between species that live in environments of comparable richness. 

On a grander scale, the collapse of the Soviet Union at the end of the 1980s has been in-
terpreted by some as confirmation of F. A. Hayek’s prediction that the variety (in Ashby’s sense) 
of the command structure in a Soviet-style command economy could never equal the variety of a 
free-market economy.  Ashby and Hayek were probably not aware of each other’s work (one was 
a physician, the other a political theorist), although they were active at about the same time.   
 
11. The Yale psychologist Clark L. Hull (l884-l952) was one of the most influential figures in 
the history of behaviorism and stimulus-response psychology. His best-known books are the 
Principles of Behavior (1943), a theoretical and experimental account of how rats learn about 
mazes; the Mathematico-Deductive Theory of Rote Learning (1940, with several other authors), 
an account of how people learn nonsense syllables; and A Behavior System (1952), an updated 
version of the Principles.  A good secondary account of his work appears in Osgood (1953).  
Hull, although not a mathematician either by nature or training, was nevertheless inspired by 
what he took to be Newton’s mathematico-deductive method.  Unfortunately, he failed to grasp 
the idea that the power of mathematical theory lies in its economy: Newton needed only three 
laws to explain the movement of all physical bodies, but Hull and his students, at various times, 
came up with dozens of axioms and corollaries to explain a set of observations hardly more var-
ied than the theoretical constructs they applied to them. The corpus of arduously obtained ex-
perimental results that flowed from Hullian theory has yielded very little of permanent value, in 
large measure because the experiments were tightly bound to the testing of particular hypotheses, 
most of which are now of only historical interest. Nevertheless, Hull and his followers raised a 
number of issues that continue to be important, such as the relative contributions of reinforce-
ment (reward and punishment) and practice to be “strength” of a habit, the distinction between 
learning and performance, and the similarities and differences between different kinds of motiva-
tional variables such as deprivation (e.g., time without food) and incentive (e.g., the attractive-
ness of food). 


